久久人国产线看观看视电影-男人和女人免费视频大全播放,免费一级欧美大片久久网,日韩精品免费一区二区,永久无需付费看mv,日本不卡一区二区三区视频-99九九精品免费视频观看-一级做a爰片久久毛片美女图片-青草视频在线观看完整版 ,亚洲a级片在线观看,亚洲精品第三页,亚洲一区中文字幕,免费在线日韩,中文字幕日本亚洲欧美不卡,久久中文字幕日韩精品,亚洲三级在线看 ,少妇搡BBBB搡BBB搡AA,四川少妇BBB凸凸凸BBB按摩,四川BBB搡BBB搡多人乱亂,妇女敕BBB搡BBBBBB搡,另类老妇奶性生BBWBBW,女BBBB槡BBBB槡BBBB

新型植物根系生長監(jiān)測系統(tǒng)CI-602
日期:2017-04-28 10:01:41

主要功能

●  動態(tài)監(jiān)測根系的生長動態(tài)

  長期監(jiān)測根系的詳細結(jié)構(gòu)(甚至土壤顆粒)

  可以快速獲得不同深度的根系分布或土壤剖面圖像

  定點、連續(xù)觀測根系在整個生長季中的動態(tài)變化

  快速的掃描獲得高清的根系圖像

  掃描軟件可以設(shè)置不同圖像格式(BMP、JPG、TIF和PNG)

  對光源進行設(shè)置,滿足不同土壤環(huán)境下的掃描

  ICAP命名方式兼容不同分析軟件

  分析軟可以快速的進行分析根系的相關(guān)參數(shù)(根長、周長、表面積、體積、根尖數(shù)、直徑等36個常用參數(shù))

測量參數(shù)

  根系長度、直徑、截面積、投影面積、根尖數(shù)等參數(shù)

  獲取定位的不同時間季節(jié)、不同深度的根系分布或土壤剖面圖像數(shù)據(jù)

應(yīng)用領(lǐng)域

廣泛應(yīng)用在田間農(nóng)作物根系研究、林木根系長期監(jiān)測,水利工程(例如大壩)護坡草坪選種培育、古樹病蟲害的監(jiān)測、草原的植被恢復(fù)與保護研究。

主要技術(shù)參數(shù)

  工作環(huán)境:0℃~50℃,相對濕度0~100%RH(沒有水汽凝結(jié))

  *主機特點:柱型設(shè)計的360度旋轉(zhuǎn)光電耦合主機,可對根系和土壤狀態(tài)進行不變形的線性數(shù)據(jù)獲取

  可獲得高至1200Dpi高清圖像

  無損線性掃描

  光學(xué)分辨率可選100、300、600、1200Dpi

  電源:UMPC終端供電和軟件控制

  接口:USB、WiFi或藍牙

  數(shù)據(jù)存貯:直接存貯到數(shù)據(jù)處理終端

  *一次獲取數(shù)據(jù)尺寸:21.56cm×18.3cm

  主機獲取速率:≥30秒(依據(jù)選擇不同Dpi)

  *主機探頭尺寸:35.9cm長×4.6cm(直徑)

  控制盒尺寸:18 cm × 7.5 cm × 5 cm

  *主機:750g

根管

  內(nèi)徑:5.0cm

  外徑:5.7cm

  壁厚:3.2mm

  長度:1m或2m

選購指南

主機、專業(yè)根系軟件、校準管、探桿、連接電纜、使用說明書、便攜式儀器箱 

68639bc808e4b.jpg

配置選項一

根系分析軟件系統(tǒng) 

CI-690ROOTSNAP根系分析軟件系統(tǒng)

CI-690 RootSnap專業(yè)根系分析軟件安裝在觸摸屏的圖像數(shù)據(jù)處理終端上,可以非常方便的使用手指在根圖上劃過選擇根系(新型方式)或使用鼠標點擊選擇根(傳統(tǒng)方式),RootSnap將自動擬合根生長的軌跡,包括調(diào)整根系軌跡弧度,根系角度研究,手指控制放大縮小圖像等。自動測量根的長度、直徑、表面積、體積等參數(shù),還可以一鍵估算圖像中的總生物量。

功能

  多點控制界面,優(yōu)化觸屏功能

  根長、面積、體積、直徑和分枝角的測量

  平均根參數(shù)

  在6秒內(nèi)快速獲得根的軌跡

  改善圖像品質(zhì)

  自動“Snap to Root”功能

  綜合分析關(guān)鍵包

  時間序列根圖分析

  友好的用戶界面

配置選項二

WinRHIZO Tron MF根系分析軟件

利用WinRHIZO Tron MF可以對CI-600獲取的根系圖像進行分析,可得到根系根長、表面積、投影面積、體積、平均根直徑和根尖數(shù)目等參數(shù),監(jiān)測根系時空生長變化。

12.png

產(chǎn)地:美國CID

參考文獻

原始數(shù)據(jù)來源:Google Scholar

1. L. N. B?ske et al., Applying minirhizotrons to observe spatiotemporal variations in rooting depth and distribution in agroecosystems to improve the performance of hydrological models. Vadose Zone Journal 24, e20382 (2025).

2. H. Zhou et al., Silicon drip fertigation improved sugar beet root and canopy growth and alleviated water deficit stress in arid areas. European Journal of Agronomy 159, 127236 (2024).

3. T. Zhang et al., Analysis of Leaf and Soil Nutrients, Microorganisms and Metabolome in the Growth Period of Idesia polycarpa Maxim. Microorganisms 12, 746 (2024).

4. J. Yuan, M. Peng, G. Tang, Y. Wang, Fine root production, mortality, and turnover in response to simulated nitrogen deposition in the subtropical Abies georgei (Orr) forest. Science of The Total Environment 923, 171404 (2024).

5. S. Uddin et al., Water use dynamics of dryland wheat grown under elevated CO2 with supplemental nitrogen. Crop and Pasture Science 75, - (2024).

6. Y. Tian et al., Improving cotton productivity and nitrogen use efficiency through late nitrogen fertilization: Evidence from a three-year field experiment in the Xinjiang. Field Crops Research 313, 109433 (2024).

7. C. Tardivo, L. Archer, L. Nunes, F. Alferez, U. Albrecht, Root System Reductions of Grafted ‘Valencia’ Orange Trees Are More Extensive Than Aboveground Reductions after Natural Infection with Candidatus Liberibacter Asiaticus. HortScience 59, 595-604 (2024).

8. Y. Song et al., Regulatory effects of non-growing season precipitation on the community structure, biomass allocation, and water-carbon utilization in a temperate desert steppe. Journal of Hydrology 634, 131112 (2024).

9. I. Rog et al., Increased belowground tree carbon allocation in a mature mixed forest in a dry versus a wet year. Global Change Biology 30, e17172 (2024).

10. M. Piecha et al., Plant roots but not hydrology control microbiome composition and methane flux in temperate fen mesocosms. Science of The Total Environment 940, 173480 (2024).

11. L. Jia et al., Contrasting depth-related fine root plastic responses to soil warming in a subtropical Chinese fir plantation. Journal of Ecology n/a,  (2024).

12. W. Huh et al. (Research Square, 2024).

13. S. Huai et al., Short-Term Effects of Incorporation Depth of Straw Combined with Manure During the Fallow Season on Maize Production, Water Efficiency, and Nutrient Utilization in Rainfed Regions. Agronomy 14, 2504 (2024).

14. C. Guo et al., Adaptive strategies in architecture and allocation for the asymmetric growth of camphor tree (Cinnamomum camphora L.). Scientific Reports 14, 22604 (2024).

15. R. S. de Oliveira et al., Survey and genomic characterization of Serratia marcescens on endophytism, biofilm, and phosphorus solubilization in rice plants. Environmental Science and Pollution Research 31, 65834-65848 (2024).

16. N. B. Costa et al., Beneficial bacteria mitigate combined water and phosphorus deficit effects on upland rice. Plant and Soil,  (2024).

17. W. Bieluczyk et al., Fine root production and decomposition of integrated plants under intensified farming systems in Brazil. Rhizosphere 31, 100930 (2024).

18. T. Banet, A. G. Smith, R. McGrail, D. H. McNear Jr., H. Poffenbarger, Toward improved image-based root phenotyping: Handling temporal and cross-site domain shifts in crop root segmentation models. The Plant Phenome Journal 7, e20094 (2024).

19. G. Azam, K. Wickramarachchi, C. Scanlan, Y. Chen, Deep and continuous root development in ameliorated soil improves water and nutrient uptakes and wheat yield in water-limited conditions. Plant and Soil,  (2024).

20. A. A. Atta, K. T. Morgan, S. A. Hamido, D. M. Kadyampakeni, Irrigation optimization enhances water management and tree performance in commercial citrus groves on sandy soil. Irrigation Science,  (2024).

21. A. Atta, K. Morgan, S. Hamido, D. Kadyampakeni, Irrigation optimization enhances water management and tree performance in commercial citrus groves on sandy soil.  (2024).

22. J. Arnhold et al., Minirhizotron measurements can supplement deep soil coring to evaluate root growth of winter wheat when certain pitfalls are avoided. Plant Methods 20, 183 (2024).

收 藏
古丈县| 阆中市| 运城市| 冕宁县| 徐州市| 石河子市| 郎溪县| 伊春市| 昭觉县| 贡嘎县| 广安市| 犍为县| 泾阳县| 长葛市| 宁陕县| 体育| 定日县| 闵行区| 景谷| 浮梁县| 崇州市| 东光县| 南江县| 堆龙德庆县| 灵川县| 通江县| 乌兰县| 竹溪县| 长春市| 崇左市| 洪湖市| 甘孜县| 宁德市| 聂荣县| 仁布县| 东兰县| 独山县| 北票市| 台北市| 铅山县| 同仁县|